++
Transmitter Release Is Regulated by Depolarization of the Presynaptic Terminal
Release Is Triggered by Calcium Influx
Transmitter Is Released in Quantal Units
Transmitter Is Stored and Released by Synaptic Vesicles
Synaptic Vesicles Discharge Transmitter by Exocytosis and Are Recycled by Endocytosis
Capacitance Measurements Provide Insight into the Kinetics of Exocytosis and Endocytosis
Exocytosis Involves the Formation of a Temporary Fusion Pore
The Synaptic Vesicle Cycle Involves Several Steps
Exocytosis of Synaptic Vesicles Relies on a Highly Conserved Protein Machinery
The Synapsins Are Important for Vesicle Restraint and Mobilization
SNARE Proteins Catalyze Fusion of Vesicles with the Plasma Membrane
Calcium Binding to Synaptotagmin Triggers Transmitter Release
The Fusion Machinery Is Embedded in a Conserved Protein Scaffold at the Active Zone
Modulation of Transmitter Release Underlies Synaptic Plasticity
An Overall View
++
Some of the brain's most remarkable abilities, such as learning and memory, are thought to emerge from the elementary properties of chemical synapses, where presynaptic terminals release chemical transmitters that activate receptors in the membrane of the postsynaptic cell. In the last three chapters we saw how postsynaptic receptors control ion channels that generate the postsynaptic potential. Here we consider how electrical and biochemical events in the presynaptic terminal lead to the secretion of neurotransmitters. In the next chapter we examine the chemistry of the neurotransmitters themselves.
+++
Transmitter Release Is Regulated by Depolarization of the Presynaptic Terminal
++
What are the signals at the presynaptic terminal that lead to the release of transmitter? Bernard Katz and Ricardo Miledi first demonstrated the importance of depolarization of the presynaptic membrane through the firing of a presynaptic action potential. For this purpose they used the giant synapse of the squid, a synapse large enough to permit insertion of electrodes into both pre- and postsynaptic structures. Two electrodes are inserted into the presynaptic terminal—one for stimulating and one for recording—and one electrode is inserted into the postsynaptic cell for recording the excitatory postsynaptic potential (EPSP), which provides an index of transmitter release (Figure 12–1A).
++