APPROACH TO THE PATIENT: Dementias
Three major issues should be kept at the forefront: (1) What is the best fit for a clinical diagnosis? (2) What component of the dementia syndrome is treatable or reversible? (3) Can the physician help to alleviate the burden on caregivers? A broad overview of the approach to dementia is shown in Table 21-3. The major degenerative dementias can usually be distinguished by the initial symptoms; neuropsychological, neuropsychiatric, and neurologic findings; and neuroimaging features (Table 21-4).
HISTORY The history should concentrate on the onset, duration, and tempo of progression. An acute or subacute onset of confusion may be due to delirium (Chap. 18) and should trigger the search for intoxication, infection, or metabolic derangement. An elderly person with slowly progressive memory loss over several years is likely to suffer from AD. Nearly 75% of patients with AD begin with memory symptoms, but other early symptoms include difficulty with managing money, driving, shopping, following instructions, finding words, or navigating. Personality change, disinhibition, and weight gain or compulsive eating suggest FTD, not AD. FTD is also suggested by prominent apathy, compulsivity, loss of empathy for others, or progressive loss of speech fluency or single-word comprehension and by a relative sparing of memory and visuospatial abilities. The diagnosis of DLB is suggested by early visual hallucinations; parkinsonism; proneness to delirium or sensitivity to psychoactive medications; rapid eye movement (REM) behavior disorder (RBD; the loss of skeletal muscle paralysis during dreaming); or Capgras syndrome, the delusion that a familiar person has been replaced by an impostor.
A history of stroke with irregular stepwise progression suggests vascular dementia. Vascular dementia is also commonly seen in the setting of hypertension, atrial fibrillation, peripheral vascular disease, and diabetes. In patients suffering from cerebrovascular disease, it can be difficult to determine whether the dementia is due to AD, vascular disease, or a mixture of the two because many of the risk factors for vascular dementia, including diabetes, high cholesterol, elevated homocysteine, and low exercise, are also putative risk factors for AD. Moreover, many patients with a major vascular contribution to their dementia lack a history of stepwise decline. Rapid progression with motor rigidity and myoclonus suggests CJD (Chap. 40). Seizures may indicate strokes or neoplasm but also occur in AD, particularly early-age-of-onset AD. Gait disturbance is common in vascular dementia, PD/DLB, or NPH. A history of high-risk sexual behaviors or intravenous drug use should trigger a search for central nervous system (CNS) infection, especially HIV or syphilis. A history of recurrent head trauma could indicate chronic subdural hematoma, chronic traumatic encephalopathy (a progressive dementia best characterized in contact sport athletes such as boxers and American football players), intracranial hypotension, or NPH. Subacute onset of severe amnesia and psychosis with mesial temporal T2/fluid-attenuated inversion recovery (FLAIR) hyperintensities on magnetic resonance imaging (MRI) should raise concern for paraneoplastic limbic encephalitis, especially in a long-term smoker or other patients at risk for cancer. Related autoimmune conditions, such as voltage-gated potassium channel (VGKC)- or N-methyl-d-aspartate (NMDA)-receptor antibody-mediated encephalopathy, can present with a similar tempo and imaging signature with or without characteristic motor manifestations such as myokymia (anti-VGKC) and faciobrachial dystonic seizures (anti-NMDA). Alcohol abuse creates risk for malnutrition and thiamine deficiency. Veganism, bowel irradiation, an autoimmune diathesis, a remote history of gastric surgery, and chronic antihistamine therapy for dyspepsia or gastroesophageal reflux predispose to B12 deficiency. Certain occupations, such as working in a battery or chemical factory, might indicate heavy metal intoxication. Careful review of medication intake, especially for sedatives and analgesics, may raise the issue of chronic drug intoxication. An autosomal dominant family history is found in HD and in familial forms of AD, FTD, DLB, or prion disorders. A history of mood disorders, the recent death of a loved one, or depressive signs, such as insomnia or weight loss, raise the possibility of depression-related cognitive impairments.
PHYSICAL AND NEUROLOGIC EXAMINATION A thorough general and neurologic examination is essential to document dementia, to look for other signs of nervous system involvement, and to search for clues suggesting a systemic disease that might be responsible for the cognitive disorder. Typical AD spares motor systems until later in the course. In contrast, FTD patients often develop axial rigidity, supranuclear gaze palsy, or a motor neuron disease reminiscent of amyotrophic lateral sclerosis (ALS). In DLB, the initial symptoms may include the new onset of a parkinsonian syndrome (resting tremor, cogwheel rigidity, bradykinesia, festinating gait), but DLB often starts with visual hallucinations or dementia. Symptoms referable to the lower brainstem (RBD, gastrointestinal or autonomic problems) may arise years or even decades before parkinsonism or dementia. Corticobasal syndrome (CBS) features asymmetric akinesia and rigidity, dystonia, myoclonus, alien limb phenomena, pyramidal signs, and prefrontal deficits such as nonfluent aphasia with or without motor speech impairment, executive dysfunction, apraxia, or a behavioral disorder. Progressive supranuclear palsy (PSP) is associated with unexplained falls, axial rigidity, dysphagia, and vertical gaze deficits. CJD is suggested by the presence of diffuse rigidity, an akinetic-mute state, and prominent, often startle-sensitive myoclonus.
Hemiparesis or other focal neurologic deficits suggest vascular dementia or brain tumor. Dementia with a myelopathy and peripheral neuropathy suggests vitamin B12 deficiency. Peripheral neuropathy could also indicate another vitamin deficiency, heavy metal intoxication, thyroid dysfunction, Lyme disease, or vasculitis. Dry, cool skin, hair loss, and bradycardia suggest hypothyroidism. Fluctuating confusion associated with repetitive stereotyped movements may indicate ongoing limbic, temporal, or frontal seizures. In the elderly, hearing impairment or visual loss may produce confusion and disorientation misinterpreted as dementia. Profound bilateral sensorineural hearing loss in a younger patient with short stature or myopathy, however, should raise concern for a mitochondrial disorder.
COGNITIVE AND NEUROPSYCHIATRIC EXAMINATION Brief screening tools such as the Mini-Mental State Examination (MMSE), the Montreal Cognitive Assessment (MOCA), and Cognistat can be used to capture dementia and follow progression. None of these tests is highly sensitive to early-stage dementia or discriminates between dementia syndromes. The MMSE is a 30 point test of cognitive function, with each correct answer being scored as 1 point. It includes tests in the areas of: orientation (e.g., identify season/date/month/year/floor/hospital/town/state/country); registration (e.g., name and restate 3 objects); recall (e.g., remember the same three objects 5 minutes later); and language (e.g., name pencil and watch; repeat “no if’s and’s or but’s”; follow a 3-step command; obey a written command; and write a sentence and copy a design). In most patients with MCI and some with clinically apparent AD, bedside screening tests may be normal, and a more challenging and comprehensive set of neuropsychological tests will be required. When the etiology for the dementia syndrome remains in doubt, a specially tailored evaluation should be performed that includes tasks of working and episodic memory, executive function, language, and visuospatial and perceptual abilities. In AD, the early deficits involve episodic memory, category generation (“name as many animals as you can in 1 minute”), and visuoconstructive ability. Usually deficits in verbal or visual episodic memory are the first neuropsychological abnormalities detected, and tasks that require the patient to recall a long list of words or a series of pictures after a predetermined delay will demonstrate deficits in most patients. In FTD, the earliest deficits on cognitive testing involve executive control or language (speech or naming) function, but some patients lack either finding despite profound social-emotional deficits. PDD or DLB patients have more severe deficits in visuospatial function but do better on episodic memory tasks than patients with AD. Patients with vascular dementia often demonstrate a mixture of executive control and visuospatial deficits, with prominent psychomotor slowing. In delirium, the most prominent deficits involve attention, working memory, and executive function, making the assessment of other cognitive domains challenging and often uninformative.
A functional assessment should also be performed to help the physician determine the day-to-day impact of the disorder on the patient’s memory, community affairs, hobbies, judgment, dressing, and eating. Knowledge of the patient’s functional abilities will help the clinician and the family to organize a therapeutic approach.
Neuropsychiatric assessment is important for diagnosis, prognosis, and treatment. In the early stages of AD, mild depressive features, social withdrawal, and irritability or anxiety are the most prominent psychiatric changes, but patients often maintain core social graces into the middle or late stages, when delusions, agitation, and sleep disturbance may emerge. In FTD, dramatic personality change with apathy, overeating, compulsions, disinhibition, euphoria, and loss of empathy are early and common. DLB is associated with visual hallucinations, delusions related to person or place identity, RBD, and excessive daytime sleepiness. Dramatic fluctuations occur not only in cognition but also in arousal. Vascular dementia can present with psychiatric symptoms such as depression, anxiety, delusions, disinhibition, or apathy.
LABORATORY TESTS The choice of laboratory tests in the evaluation of dementia is complex and should be tailored to the individual patient. The physician must take measures to avoid missing a reversible or treatable cause, yet no single treatable etiology is common; thus, a screen must use multiple tests, each of which has a low yield. Cost/benefit ratios are difficult to assess, and many laboratory screening algorithms for dementia discourage multiple tests. Nevertheless, even a test with only a 1–2% positive rate is worth undertaking if the alternative is missing a treatable cause of dementia. Table 21-3 lists most screening tests for dementia. The American Academy of Neurology recommends the routine measurement of a complete blood count, electrolytes, renal and thyroid function, a vitamin B12 level, and a neuroimaging study (computed tomography [CT] or MRI).
Neuroimaging studies, especially MRI, help to rule out primary and metastatic neoplasms, locate areas of infarction or inflammation, detect subdural hematomas, and suggest NPH or diffuse white matter disease. They also help to establish a regional pattern of atrophy. Support for the diagnosis of AD includes hippocampal atrophy in addition to posterior-predominant cortical atrophy (Fig. 21-1). Focal frontal, insular, and/or anterior temporal atrophy suggests FTD (Chap. 35). DLB often features less prominent atrophy, with greater involvement of amygdala than hippocampus. In CJD, magnetic resonance (MR) diffusion-weighted imaging reveals restricted diffusion within the cortical ribbon and basal ganglia in most patients. Extensive white matter abnormalities correlate with a vascular etiology (Fig. 21-2). Communicating hydrocephalus with vertex effacement (crowding of dorsal convexity gyri/sulci), gaping Sylvian fissures despite minimal cortical atrophy, and additional features shown in Fig. 21-3 suggest NPH. Single-photon emission computed tomography (SPECT) and PET scanning show temporal-parietal hypoperfusion or hypometabolism in AD and frontotemporal deficits in FTD, but these changes often reflect atrophy and can therefore be detected with MRI alone in many patients. Recently, amyloid imaging has shown promise for the diagnosis of AD, and Pittsburgh Compound-B (PiB) (not available outside of research settings) and 18F-AV-45 (florbetapir; approved by the U.S. Food and Drug Administration in 2013) are reliable radioligands for detecting brain amyloid associated with amyloid angiopathy or neuritic plaques of AD (Fig. 21-4). Because these abnormalities can be seen in cognitively normal older persons, however (~25% of individuals at age 65), amyloid imaging may also detect preclinical or incidental AD in patients lacking an AD-like dementia syndrome. Currently, the main clinical value of amyloid imaging is to exclude AD as the likely cause of dementia in patients who have negative scans. Once disease-modifying therapies become available, use of these biomarkers may help to identify treatment candidates before irreversible brain injury has occurred. In the meantime, the significance of detecting brain amyloid in an asymptomatic elder remains a topic of vigorous investigation. Similarly, MRI perfusion and structural/functional connectivity methods are being explored as potential treatment-monitoring strategies.
Lumbar puncture need not be done routinely in the evaluation of dementia, but it is indicated when CNS infection or inflammation are credible diagnostic possibilities. Cerebrospinal fluid (CSF) levels of Aβ42 and tau proteins show differing patterns with the various dementias, and the presence of low Aβ42 and mildly elevated CSF tau is highly suggestive of AD. The routine use of lumbar puncture in the diagnosis of dementia is debated, but the sensitivity and specificity of AD diagnostic measures are not yet high enough to warrant routine use. Formal psychometric testing helps to document the severity of cognitive disturbance, suggest psychogenic causes, and provide a more formal method for following the disease course. Electroencephalogram (EEG) is not routinely used but can help to suggest CJD (repetitive bursts of diffuse high-amplitude sharp waves, or “periodic complexes”) or an underlying nonconvulsive seizure disorder (epileptiform discharges). Brain biopsy (including meninges) is not advised except to diagnose vasculitis, potentially treatable neoplasms, or unusual infections when the diagnosis is uncertain. Systemic disorders with CNS manifestations, such as sarcoidosis, can usually be confirmed through biopsy of lymph node or solid organ rather than brain. MR angiography should be considered when cerebral vasculitis or cerebral venous thrombosis is a possible cause of the dementia.
TREATMENT: Dementia
The major goals of dementia management are to treat reversible causes and to provide comfort and support to the patient and caregivers. Treatment of underlying causes includes thyroid replacement for hypothyroidism; vitamin therapy for thiamine or B12 deficiency or for elevated serum homocysteine; antimicrobials for opportunistic infections or antiretrovirals for HIV; ventricular shunting for NPH; or appropriate surgical, radiation, and/or chemotherapeutic treatment for CNS neoplasms. Removal of cognition-impairing drugs or medications is frequently useful. If the patient’s cognitive complaints stem from a psychiatric disorder, vigorous treatment of this condition should seek to eliminate the cognitive complaint or confirm that it persists despite adequate resolution of the mood or anxiety symptoms. Patients with degenerative diseases may also be depressed or anxious, and those aspects of their condition often respond to therapy. Antidepressants, such as selective serotonin reuptake inhibitors (SSRIs) or serotonin-norepinephrine reuptake inhibitors (SNRIs) (Chap. 60), which feature anxiolytic properties but few cognitive side effects, provide the mainstay of treatment when necessary. Anticonvulsants are used to control seizures. Levetiracetam may be particularly useful, but there have as yet been no randomized trials for treatment of AD-associated seizures.
Agitation, hallucinations, delusions, and confusion are difficult to treat. These behavioral problems represent major causes for nursing home placement and institutionalization. Before treating these behaviors with medications, the clinician should aggressively seek out modifiable environmental or metabolic factors. Hunger, lack of exercise, toothache, constipation, urinary tract or respiratory infection, electrolyte imbalance, and drug toxicity all represent easily correctable causes that can be remedied without psychoactive drugs. Drugs such as phenothiazines and benzodiazepines may ameliorate the behavior problems but have untoward side effects such as sedation, rigidity, dyskinesia, and occasionally paradoxical disinhibition (benzodiazepines). Despite their unfavorable side effect profile, second-generation antipsychotics such as quetiapine (starting dose, 12.5–25 mg daily) can be used for patients with agitation, aggression, and psychosis, although the risk profile for these compounds is significant. When patients do not respond to treatment, it is usually a mistake to advance to higher doses or to use anticholinergic drugs or sedatives (such as barbiturates or benzodiazepines). It is important to recognize and treat depression; treatment can begin with a low dose of an SSRI (e.g., escitalopram, starting dose 5 mg daily, target dose 5–10 mg daily) while monitoring for efficacy and toxicity. Sometimes apathy, visual hallucinations, depression, and other psychiatric symptoms respond to the cholinesterase inhibitors, especially in DLB, obviating the need for other more toxic therapies.
Cholinesterase inhibitors are being used to treat AD (donepezil, rivastigmine, galantamine) and PDD (rivastigmine). Recent work has focused on developing antibodies against Aβ42 as a treatment for AD. Although the initial randomized controlled trials failed, there was some evidence for efficacy in the mildest patient groups. Therefore, researchers have begun to focus on patients with very mild disease and asymptomatic individuals at risk for AD, such as those who carry autosomal dominantly inherited genetic mutations or healthy elders with CSF or amyloid imaging biomarker evidence supporting presymptomatic AD. Memantine proves useful when treating some patients with moderate to severe AD; its major benefit relates to decreasing caregiver burden, most likely by decreasing resistance to dressing and grooming support. In moderate to severe AD, the combination of memantine and a cholinesterase inhibitor delayed nursing home placement in several studies, although other studies have not supported the efficacy of adding memantine to the regimen.
A proactive strategy has been shown to reduce the occurrence of delirium in hospitalized patients. This strategy includes frequent orientation, cognitive activities, sleep-enhancement measures, vision and hearing aids, and correction of dehydration.
Nondrug behavior therapy has an important place in dementia management. The primary goals are to make the patient’s life comfortable, uncomplicated, and safe. Preparing lists, schedules, calendars, and labels can be helpful in the early stages. It is also useful to stress familiar routines, walks, and simple physical exercises. For many demented patients, memory for events is worse than their ability to carry out routine activities, and they may still be able to take part in activities such as walking, bowling, dancing, singing, bingo, and golf. Demented patients often object to losing control over familiar tasks such as driving, cooking, and handling finances. Attempts to help or take over may be greeted with complaints, depression, or anger. Hostile responses on the part of the caregiver are counterproductive and sometimes even harmful. Reassurance, distraction, and calm positive statements are more productive in this setting. Eventually, tasks such as finances and driving must be assumed by others, and the patient will conform and adjust. Safety is an important issue that includes not only driving but controlling the kitchen, bathroom, and sleeping area environments, as well as stairways. These areas need to be monitored, supervised, and made as safe as possible. A move to a retirement complex, assisted-living center, or nursing home can initially increase confusion and agitation. Repeated reassurance, reorientation, and careful introduction to the new personnel will help to smooth the process. Providing activities that are known to be enjoyable to the patient can be of considerable benefit.
The clinician must pay special attention to frustration and depression among family members and caregivers. Caregiver guilt and burnout are common. Family members often feel overwhelmed and helpless and may vent their frustrations on the patient, each other, and health care providers. Caregivers should be encouraged to take advantage of day-care facilities and respite services. Education and counseling about dementia are important. Local and national support groups, such as the Alzheimer’s Association (www.alz.org), can provide considerable help.